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Synthetic methods for c-lactam and pyrrole derivatives exploiting
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Abstract—4-Aryloxymethyl-3-pyrrolines and their isomeric pyrrolidines––assembled via a one-pot, three-component coupling of
propargylic amines, vinyl sulfones, and phenols––may be elaborated further to provide an easy access to 2,4-disubstituted pyrrole-3-
carboxylates and 3,4-disubstituted pyrrolidin-2-ones. The latter were prepared by means of an unprecedented rearrangement process
involving hydrogenolysis of 2-aryl pyrrolidine-3-carboxylates, whereas the pyrrole carboxylates arose from aromatization of the
corresponding pyrrolines.
� 2003 Published by Elsevier Ltd.
Nitrogen heterocycles are of considerable pharmaco-
logical relevance and the development of new methods
to synthesize them efficiently is an important field in
organic chemistry.1;2 Multicomponent strategies are of
particular interest as they offer the possibility of rapidly
producing libraries of small molecules without tedious
and time-consuming purification. They are therefore
valuable tools in the search for new drug candidates.3

Recently, we described a new one-pot, three-component
coupling strategy based on two consecutive metal-cata-
lyzed reactions, which provides a straightforward entry
into elaborate 4-aryloxymethyl-3-pyrrolines 1 and their
isomeric pyrrolidines 2 through the assembly of three
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flexible readily available starting materials: propargylic
amines, vinyl sulfones, and phenols (Scheme 1).4 We
envisioned that these heterocycles would represent use-
ful scaffolds for derivatization chemistry. Further syn-
thetic manipulations may indeed offer new opportunities
to access other interesting nitrogen heterocyclic struc-
tures and thereby widen the synthetic potential of our
multicomponent process.

To this end we reasoned that upon subjection to cata-
lytic hydrogenation, heterocycles 1 and 2 would rear-
range to afford a novel series of c-lactam derivatives 3
through consecutive hydrogenation of the double bond,
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ring opening by cleavage of the N-benzyl bond, and ring
closure taking advantage of the ester group (Scheme 2).
To the best of our knowledge this synthetic approach
toward c-lactams had not been previously explored.

To test the feasibility of this process, the respective
reactivities of 1 and 2 toward hydrogenation were
investigated separately. To this end a range of five
pyrrolines 1a–e and pyrrolidines 2a–e were prepared
according to procedures reported previously4 and sep-
arated by conventional chromatographical techniques.
First attempts conducted on 2b using Pd/C under 1 atm
H2 in various solvents (EtOAc, MeOH, benzene) gave
poor results, the reactions proceeding very slowly.
However, aside from non-negligible amounts of recov-
ered starting material, the desired lactam 3b was always
isolated from the reaction mixtures along with pyrrol-
idine 4b, both products being formed as single diastereo-
mers. These could be easily separated by
chromatography and their respective stereochemistries
were elucidated by extensive NMR experiments (1H, 13C
NMR, COSY 2D, HMBC or HSQC–TOCSY, NOESY
2D). On subjecting pyrrolidine 4b to hydrogenation, it
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was also confirmed that this was the first intermediate
species to be generated in the process, which subse-
quently undergoes ring rearrangement to furnish 3b.5 It
should be noted, however, that no traces of the putative
amino ester intermediate 5b were detected in the reac-
tion mixtures within the limits of 1H NMR sensitivity.
Finally, the best results were obtained by increasing the
pressure to 10 bars of H2 in EtOAc. Under these con-
ditions 2b was totally consumed and furnished the
desired lactam 3b almost exclusively in 60% isolated
yield, albeit in 4 days reaction time (Scheme 3).6

Unfortunately, when 1b was subjected to the same
reaction conditions an intractable mixture of products
was obtained aside from a large quantity of (3,4-
methylenedioxy)phenol (85% recovery based on 1b)
indicating that, as would be expected, competitive
reductive cleavage of the benzyloxy group was occur-
ring. The generality of the process was thus investigated
with pyrrolidines 2, all of which gave the corresponding
pyrrolidin-2-ones in comparable yields (50–72%) but
with quite different reaction times. It was indeed
observed that reaction rates decreased with increasing
functionalization of the aryl moieties (Fig. 1).7

We next investigated the reactivity of the isomeric
pyrrolines 1a–e toward aromatization as an opportunity
to access pyrrole derivatives of type 6. We found that the
pyrroles could indeed be obtained in high yields upon
treatment of the pyrrolines with 1.1 equiv of DDQ (2,3-
dichloro-5,6-dicyano-1,4-benzoquinone) in toluene at
room temperature (Fig. 2).8;9
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In summary, we have shown that a variety of five-
membered nitrogen heterocycles––pyrrolidines, pyrrol-
ines, pyrroles, and c-lactams––may be easily prepared
by exploiting a three-component combination of prop-
argylic amines, vinyl sulfones, and phenols. Of particu-
lar interest is the new entry to the c-lactam derivatives
based on the unprecedented rearrangement of 2-aryl
pyrrolidine-3-carboxylates under classical catalytic
hydrogenation conditions.
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